CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Grade 6 Math Circles November 8/9/10, 2022 Introduction to Set Theory - Solution

- 1. Rewrite these set definitions by listing the elements in the set.
 - (a) $A = \{x \mid x \text{ is an upper-case letter}\}.$
 - (b) $B = \{x \mid x \text{ is a Canadian province or territory}\}.$
 - (c) $C = \{x \mid x \text{ is an odd positive integer}\}.$
 - (d) $D = \{x \mid x \text{ is a prime number greater than } 2\}.$
 - (e) $E = \{x \mid x \text{ is a negative number greater than } 0\}.$
 - (f) $F = \{x \mid x \text{ is the empty set}\}.$

Solution:

- (a) $A = \{A, B, C, \dots, X, Y, Z\}.$
- (b) $B = \{ Alberta, Manitoba, Nunavut, \dots, Ontario, Northwest Territories, Yukon \}.$
- (c) $C = \{1, 3, 5, 7, 9, \ldots\}.$
- (d) $D = \{3, 5, 7, 11, 13, 17, \ldots\}.$
- (e) $E = \emptyset$.
- (f) $F = \{ \varnothing \}.$

2. Let $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ be the universal set.

Let $A = \{0, 1, 2, 8, 9\}$ and $B = \{1, 3, 5, 7, 9\}$. Find the following sets by listing all the elements.

- (a) $A \cup B$
- (b) $A \cap B$
- (c) A^C
- (d) B^C
- (e) $A \setminus B$
- (f) $B \setminus A$
- (g) $(A \cup B)^C$

Solution:

(a) $A \cup B = \{0, 1, 2, 3, 5, 7, 8, 9\}$ (b) $A \cap B = \{1, 9\}$ (c) $A^C = \{3, 4, 5, 6, 7\}$

- (d) $B^C = \{0, 2, 4, 6, 8\}$
- (e) $A \setminus B = \{0, 2, 8\}$
- (f) $B \setminus A = \{3, 5, 7\}$
- (g) $(A \cup B)^C = \{4, 6\}$

3. Let A = {x | x is a real number greater than 0}.
Let B = {x | x is a real number less than or equal to 7}.
Write the set definitions of the following set by using the elementhood test.

- (a) $A \cap B$
- (b) $A \cup B$
- (c) $B \cap \mathbb{Z}$
- (d) $A \cup \mathbb{N}$

Solution:

- (a) $A \cap B = \{x \mid x \text{ is a real number greater than } 0 \text{ and less than or equal to } 7\}.$ We can also write $A \cap B = \{x \in \mathbb{R} \mid 0 < x \leq 7\}$, using mathematical notations.
- (b) Since every real number is either in A or B or in both A and B, we have $A \cup B = \{x \mid x \text{ is a real number}\} = \mathbb{R}$.
- (c) Notice that $\mathbb{Z} \subseteq \mathbb{R}$. So, $B \cap \mathbb{Z} = \{x \mid x \text{ is an integer less than or equal to 7}\}.$
- (d) Notice that $\mathbb{N} \subseteq A$. So, $A \cup \mathbb{N} = A$.
- 4. Find the cardinality of the following sets
 - (a) $\{101, 102, 103, 104\}$
 - (b) $\{ dog, cat \}$
 - (c) $\{\{a,b\}, b, \{a,b,c\}\}$
 - (d) $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$

- (e) $\{x \in \mathbb{N} \mid x \leq 10\}$ (or $\{x \mid x \text{ is a natural number less than or equal to } 10\}$)
- (f) $\{x \mid x \in \mathbb{W} \setminus \mathbb{N}\}$
- (g) $\{x \mid x \text{ is a prime number}\} \cap \{x \mid x \text{ is an even positive integer}\}$
- (h) $\mathbb{Q} \cap \emptyset$

Solution:

- (a) 4.
- (b) 2.
- (c) 3.
- (d) 3.
- (e) 10.
- (f) 1. Since $\{x \mid x \in \mathbb{W} \setminus \mathbb{N}\} = \{0\}$.
- (g) 1. Since $\{x \mid x \text{ is a prime number}\} \cap \{x \mid x \text{ is an even positive integer}\} = \{2\}$.
- (h) 0. Since $\mathbb{Q} \cap \emptyset = \emptyset$.

5. Let A and B represent sets.

- (a) Is it always the case that $(A \cap B) \subseteq (A \cup B)$? Why or why not?
- (b) Is it always the case that $(A \cup B) \subseteq (A \cap B)$? Why or why not?
- (c) If you have $(A \cap B) \subseteq (A \cup B)$ and $(A \cup B) \subseteq (A \cap B)$, what do you know about the two sets A and B?

Solution:

- (a) Yes, that is always the case. Since $(A \cup B)$ contains all elements that are in A and all elements that are in B, it must contain all elements that are in both A and B.
- (b) No, that is not always the case. Let's suppose that there is an element, x, in A but not in B. Then $x \in (A \cup B)$ but $x \notin (A \cap B)$. Hence, $(A \cup B)$ is not always a subset of $(A \cap B)$.
- (c) If we have $(A \cup B) \subseteq (A \cap B)$, then we have:

 $A \subseteq (A \cup B) \subseteq (A \cap B) \subseteq B$ $B \subseteq (A \cup B) \subseteq (A \cap B) \subseteq A$

Thus, we have $A \subseteq B$ and $B \subseteq A$. Therefore, A = B.

- 6. Let A and B represent sets.
 - (a) Is it always the case that $(A \setminus B) \subseteq (A \cap B^C)$? Why or why not?
 - (b) Is it always the case that $(A \cap B^C) \subseteq (A \setminus B)$? Why or why not?
 - (c) What can you conclude from (a) and (b)?

Solution:

(a) Yes, that is always the case. We have

$$(A \setminus B) = (A \cap (A \setminus B))$$
$$\subseteq (A \cap (U \setminus B))$$
$$= (A \cap B^{C})$$

- (b) Yes, that is always the case. Let x be an element in the set $(A \cap B^C)$. Then x is both in A and B^C . That is, x is in A but not in B. Thus, x is in $A \setminus B$ as well. This means if there is an element in $A \cap B^C$, then it is also in $A \setminus B$. Therefore, $(A \cap B^C) \subseteq (A \setminus B)$.
- (c) We know that $(A \setminus B) = (A \cap B^C)$.
- 7. Let A and B represent sets.
 - (a) Is it always the case that $((A \cup B) \setminus B) \subseteq A$? Why or why not?
 - (b) Give an example of two sets A and B for which $(A \cup B) \setminus B \neq A$.

Solution:

(a) Yes, that is always the case. Let x be an element in the set $(A \cup B) \setminus B$. Then x is in $A \cup B$ but not in B. This implies that x must be in A. So, if there is an element in $(A \cup B) \setminus B$, then it is also in A. Therefore $((A \cup B) \setminus B) \subseteq A$. (b) Such example of the sets can be given by $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$.

$$(A \cup B) \setminus B = \{1, 2, 3, 4, 5\} \setminus \{3, 4, 5\}$$
$$= \{1, 2\}$$
$$\neq A$$

8. Below is the Venn diagram for 2 sets, A and B. Notice that the overlapping part is the intersection of A and B. Think about what part of the diagram represents the union of A and B.

Below is the Venn diagram for 3 sets, A, B, and C. Notice $A \cap B \cap C$ is marked where three circles (sets) are overlapping. Think about what parts of the diagram represent $(A \cap B), (B \cap C), (A \cup C), (A \cup C), (A \cup C), (A \cup B \cup C)$, etc.

CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Now, do you think it is possible to draw a Venn diagram for 4 sets, A, B, C, and D? If so, how?

Retrieved from *How to Prove It* by Velleman

D

Why is this wrong?

You will not be able to find sections that represent $A \cap D$ and $B \cap C$.

С

9. Introduction to Power Set

Power Set

Given a set A, we define the **power set** of A to be the set

$$\mathbb{P}(A) = \{ X \mid X \subseteq A \}.$$

In words, the power set of A, $\mathbb{P}(A)$, is a collection of all subsets of A including \emptyset and A itself.

Let $A = \{0, 1\}, B = \{0, 1, 2\}$, and $C = \{0, 1, 2, 3\}$.

- (a) Find $\mathbb{P}(A)$, $\mathbb{P}(B)$, and $\mathbb{P}(C)$.
- (b) Find the cardinality of A, B, and C.
- (c) Find the cardinality of $\mathbb{P}(A)$, $\mathbb{P}(B)$, and $\mathbb{P}(C)$.
- (d) What observation can you make with what you have found in (b) and (c)?

Solution:

(a) We have

$$\begin{split} \mathbb{P}(A) &= \{ \varnothing, \{0\}, \{1\}, \{0, 1\} \} \\ \mathbb{P}(B) &= \{ \varnothing, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\} \} \\ \mathbb{P}(C) &= \{ \varnothing, \{0\}, \{1\}, \{2\}, \{3\}, \{0, 1\}, \{0, 2\}, \{0, 3\}, \{1, 2\}, \{1, 3\}, \\ &\{2, 3\}, \{0, 1, 2\}, \{0, 1, 3\}, \{0, 2, 3\}, \{1, 2, 3\}, \{0, 1, 2, 3\} \} \end{split}$$

- (b) We have |A| = 2, |B| = 3, and |C| = 4.
- (c) We have $|\mathbb{P}(A)| = 4$, $|\mathbb{P}(B)| = 8$, and $|\mathbb{P}(C)| = 16$.
- (d) Let X be a finite set. When |X| = n, then $|\mathbb{P}(X)| = 2^n$.