Grade 6 Math Circles
 November 8/9/10, 2022 Introduction to Set Theory - Solution

1. Rewrite these set definitions by listing the elements in the set.
(a) $A=\{x \mid x$ is an upper-case letter $\}$.
(b) $B=\{x \mid x$ is a Canadian province or territory $\}$.
(c) $C=\{x \mid x$ is an odd positive integer $\}$.
(d) $D=\{x \mid x$ is a prime number greater than 2$\}$.
(e) $E=\{x \mid x$ is a negative number greater than 0$\}$.
(f) $F=\{x \mid x$ is the empty set $\}$.

Solution:

(a) $A=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$.
(b) $B=\{$ Alberta, Manitoba, Nunavut, ..., Ontario, Northwest Territories, Yukon $\}$.
(c) $C=\{1,3,5,7,9, \ldots\}$.
(d) $D=\{3,5,7,11,13,17, \ldots\}$.
(e) $E=\varnothing$.
(f) $F=\{\varnothing\}$.
2. Let $U=\{0,1,2,3,4,5,6,7,8,9\}$ be the universal set.

Let $A=\{0,1,2,8,9\}$ and $B=\{1,3,5,7,9\}$. Find the following sets by listing all the elements.
(a) $A \cup B$
(b) $A \cap B$
(c) A^{C}
(d) B^{C}
(e) $A \backslash B$
(f) $B \backslash A$
(g) $(A \cup B)^{C}$

Solution:

(a) $A \cup B=\{0,1,2,3,5,7,8,9\}$
(b) $A \cap B=\{1,9\}$
(c) $A^{C}=\{3,4,5,6,7\}$
(d) $B^{C}=\{0,2,4,6,8\}$
(e) $A \backslash B=\{0,2,8\}$
(f) $B \backslash A=\{3,5,7\}$
(g) $(A \cup B)^{C}=\{4,6\}$
3. Let $A=\{x \mid x$ is a real number greater than 0$\}$.

Let $B=\{x \mid x$ is a real number less than or equal to 7$\}$.
Write the set definitions of the following set by using the elementhood test.
(a) $A \cap B$
(b) $A \cup B$
(c) $B \cap \mathbb{Z}$
(d) $A \cup \mathbb{N}$

Solution:

(a) $A \cap B=\{x \mid x$ is a real number greater than 0 and less than or equal to 7$\}$.

We can also write $A \cap B=\{x \in \mathbb{R} \mid 0<x \leq 7\}$, using mathematical notations.
(b) Since every real number is either in A or B or in both A and B, we have $A \cup B=$ $\{x \mid x$ is a real number $\}=\mathbb{R}$.
(c) Notice that $\mathbb{Z} \subseteq \mathbb{R}$. So, $B \cap \mathbb{Z}=\{x \mid x$ is an integer less than or equal to 7$\}$.
(d) Notice that $\mathbb{N} \subseteq A$. So, $A \cup \mathbb{N}=A$.
4. Find the cardinality of the following sets
(a) $\{101,102,103,104\}$
(b) $\{\operatorname{dog}$, cat $\}$
(c) $\{\{a, b\}, b,\{a, b, c\}\}$
(d) $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$
(e) $\{x \in \mathbb{N} \mid x \leq 10\}$ (or $\{x \mid x$ is a natural number less than or equal to 10$\}$)
(f) $\{x \mid x \in \mathbb{W} \backslash \mathbb{N}\}$
(g) $\{x \mid x$ is a prime number $\} \cap\{x \mid x$ is an even positive integer $\}$
(h) $\mathbb{Q} \cap \varnothing$

Solution:

(a) 4 .
(b) 2 .
(c) 3 .
(d) 3 .
(e) 10 .
(f) 1. Since $\{x \mid x \in \mathbb{W} \backslash \mathbb{N}\}=\{0\}$.
(g) 1. Since $\{x \mid x$ is a prime number $\} \cap\{x \mid x$ is an even positive integer $\}=\{2\}$.
(h) 0 . Since $\mathbb{Q} \cap \varnothing=\varnothing$.
5. Let A and B represent sets.
(a) Is it always the case that $(A \cap B) \subseteq(A \cup B)$? Why or why not?
(b) Is it always the case that $(A \cup B) \subseteq(A \cap B)$? Why or why not?
(c) If you have $(A \cap B) \subseteq(A \cup B)$ and $(A \cup B) \subseteq(A \cap B)$, what do you know about the two sets A and B ?

Solution:

(a) Yes, that is always the case. Since $(A \cup B)$ contains all elements that are in A and all elements that are in B, it must contain all elements that are in both A and B.
(b) No, that is not always the case. Let's suppose that there is an element, x, in A but not in B. Then $x \in(A \cup B)$ but $x \notin(A \cap B)$. Hence, $(A \cup B)$ is not always a subset of $(A \cap B)$.
(c) If we have $(A \cup B) \subseteq(A \cap B)$, then we have:

$$
\begin{aligned}
& A \subseteq(A \cup B) \subseteq(A \cap B) \subseteq B \\
& B \subseteq(A \cup B) \subseteq(A \cap B) \subseteq A
\end{aligned}
$$

Thus, we have $A \subseteq B$ and $B \subseteq A$. Therefore, $A=B$.
6. Let A and B represent sets.
(a) Is it always the case that $(A \backslash B) \subseteq\left(A \cap B^{C}\right)$? Why or why not?
(b) Is it always the case that $\left(A \cap B^{C}\right) \subseteq(A \backslash B)$? Why or why not?
(c) What can you conclude from (a) and (b)?

Solution:

(a) Yes, that is always the case. We have

$$
\begin{aligned}
(A \backslash B) & =(A \cap(A \backslash B)) \\
& \subseteq(A \cap(U \backslash B)) \\
& =\left(A \cap B^{C}\right)
\end{aligned}
$$

(b) Yes, that is always the case. Let x be an element in the set $\left(A \cap B^{C}\right)$. Then x is both in A and B^{C}. That is, x is in A but not in B. Thus, x is in $A \backslash B$ as well. This means if there is an element in $A \cap B^{C}$, then it is also in $A \backslash B$. Therefore, $\left(A \cap B^{C}\right) \subseteq(A \backslash B)$.
(c) We know that $(A \backslash B)=\left(A \cap B^{C}\right)$.
7. Let A and B represent sets.
(a) Is it always the case that $((A \cup B) \backslash B) \subseteq A$? Why or why not?
(b) Give an example of two sets A and B for which $(A \cup B) \backslash B \neq A$.

Solution:

(a) Yes, that is always the case. Let x be an element in the set $(A \cup B) \backslash B$. Then x is in $A \cup B$ but not in B. This implies that x must be in A. So, if there is an element in $(A \cup B) \backslash B$, then it is also in A. Therefore $((A \cup B) \backslash B) \subseteq A$.
(b) Such example of the sets can be given by $A=\{1,2,3\}$ and $B=\{3,4,5\}$.

$$
\begin{aligned}
(A \cup B) \backslash B & =\{1,2,3,4,5\} \backslash\{3,4,5\} \\
& =\{1,2\} \\
& \neq A
\end{aligned}
$$

8. Below is the Venn diagram for 2 sets, A and B. Notice that the overlapping part is the intersection of A and B. Think about what part of the diagram represents the union of A and B.

Below is the Venn diagram for 3 sets, A, B, and C. Notice $A \cap B \cap C$ is marked where three circles (sets) are overlapping. Think about what parts of the diagram represent $(A \cap B),(B \cap$ $C),(A \cap C),(A \cup B),(B \cup C),(A \cup C),(A \cup B \cup C)$, etc.

Now, do you think it is possible to draw a Venn diagram for 4 sets, A, B, C, and D ? If so, how?

Solution: A possible solution is

Retrieved from https://en.wikipedia.org/wiki/Venn_diagram
You need to make sure that the diagram has a section to represent each of the following (intersection of) sets:

- 1 set: A, B, C, D
- Intersection of 2 sets: $A \cap B, A \cap C, A \cap D, B \cap C, B \cap D, C \cap D$
- Intersection of 3 sets: $A \cap B \cap C, A \cap B \cap D, A \cap C \cap D, B \cap C \cap D$
- Intersection of 4 sets: $A \cap B \cap C \cap D$

Also, notice that the following is not a correct Venn Diagram for 4 sets.

Retrieved from How to Prove It by Velleman
Why is this wrong?
You will not be able to find sections that represent $A \cap D$ and $B \cap C$.

9. Introduction to Power Set

Power Set

Given a set A, we define the power set of A to be the set

$$
\mathbb{P}(A)=\{X \mid X \subseteq A\}
$$

In words, the power set of $A, \mathbb{P}(A)$, is a collection of all subsets of A including \varnothing and A itself.

Let $A=\{0,1\}, B=\{0,1,2\}$, and $C=\{0,1,2,3\}$.
(a) Find $\mathbb{P}(A), \mathbb{P}(B)$, and $\mathbb{P}(C)$.
(b) Find the cardinality of A, B, and C.
(c) Find the cardinality of $\mathbb{P}(A), \mathbb{P}(B)$, and $\mathbb{P}(C)$.
(d) What observation can you make with what you have found in (b) and (c)?

Solution:

(a) We have

$$
\begin{aligned}
\mathbb{P}(A) & =\{\varnothing,\{0\},\{1\},\{0,1\}\} \\
\mathbb{P}(B) & =\{\varnothing,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\} \\
\mathbb{P}(C) & =\{\varnothing,\{0\},\{1\},\{2\},\{3\},\{0,1\},\{0,2\},\{0,3\},\{1,2\},\{1,3\}, \\
& \{2,3\},\{0,1,2\},\{0,1,3\},\{0,2,3\},\{1,2,3\},\{0,1,2,3\}\}
\end{aligned}
$$

(b) We have $|A|=2,|B|=3$, and $|C|=4$.
(c) We have $|\mathbb{P}(A)|=4,|\mathbb{P}(B)|=8$, and $|\mathbb{P}(C)|=16$.
(d) Let X be a finite set. When $|X|=n$, then $|\mathbb{P}(X)|=2^{n}$.

